Improvements in the validity of ICD-based Injury Severity Scores (ICISS)

Gabrielle Davie
Assoc. Prof. Colin Cryer
Prof. John Langley
Dan Russell

Injury Prevention Research Unit, University of Otago, Dunedin
Why?

- NZIPS & other Govt agencies assess their performance in reducing injury over time
- Need to reduce service-provision and access effects when monitoring trends in non-fatal injury

- Severity threshold
- IPRU’s development of “serious non-fatal injury indicators”
Note: 1999 data are affected by the changeover from ICD-9 to ICD-10.
Source: New Zealand Health Information Service, National Minimum Data Set.
NZIPS Indicator

All Serious Non-Fatal Injury - Frequency (I01)

Note: 1999 data are affected by the changeover from ICD-9 to ICD-10. 2004 data are provisional.
Source: New Zealand Health Information Service, National Minimum Data Set.
Relevance

• Valid measurement of injury severity is:
 - critical to producing valid indicators
 - critical for the production of valid information to inform policy and injury prevention practice
What is ICISS?

• ICISS = threat-to-life based injury severity score calculated from routinely collected ICD codes

• To calculate ICISS….

First, for each ICD diagnostic code, the proportion of people who are admitted and survived their injury to discharge was calculated – this is called the Survival Risk Ratio (SRR)

\[
SRR(A) = \frac{\# \text{ hospitalisations with diag A discharged alive}}{\# \text{ hospitalisations with diag A}}
\]
How ICISS is calculated

• For people who have a **single diagnosis** (A) recorded,
 \[\text{ICISS} = \text{SRR}(A) \]

• For people who have **multiple diagnoses** (A, B, C etc.) recorded,
 \[\text{ICISS} = \text{SRR}(A) \times \text{SRR}(B) \times \text{SRR}(C) \times \ldots \times \text{SRR}(N) \]

• **ICISS = estimated survival probability**
Definition of a serious non-fatal injury

If ICISS ≤ 0.941 = Serious non-fatal injury

- Includes cases with an estimated probability of death of 5.9% or greater
- Only includes cases of injury that have a very high likelihood of admission to hospital

Examples:
- Fracture of the neck of femur
- Intracranial injury (excluding concussion only cases)
- Injuries of nerves and spinal cord at neck level
Can we improve the predictive ability of ICISS by….

- Using both NZHIS Hospitalisations & Mortality data in ICISS calculation

ICISS as currently used estimates

Survival to hospital discharge given admission

Adding all deaths would, in theory, better reflect Threat to life
Research Aim - 2

Can we improve the predictive ability of ICISS by....

- Accounting for comorbidity
 Is it possible/useful to include comorbid conditions in ICISS calculation?
Mortality diagnoses

Inclusion of non-hospitalised injury deaths

• Have diagnoses coded Mortality data from 2000 on

• Quality of mortality diagnoses?
 For those that died in hospital, compared diagnoses in Hospitalisation & Mortality datasets:
 - Illustrated that recording and coding of non-hospitalised deaths is different to that for deaths occurring in hospital
 - Used hospital diagnoses for this subset
Comorbidity

Inclusion of comorbidity

- **Harborview Assessment for Risk of Mortality (HARM)**
 - 11 comorbid conditions:
 - COPD, Congenital coagulopathy, Diabetes, Cirrhosis, IHD, Hypertension, Psychoses, Epilepsy, Obesity, Alcohol or drug dependence, Neurological degenerative disease

- **Charlson Comorbidity Index (CCI)**
 - 17 comorbid conditions:
 - Similar to HARM comorbid conditions but includes AIDS, Cancer, Connective tissue disease and doesn’t include Epilepsy or Obesity
Comorbidity SRRs

Comorbid SRRs were calculated at 2 levels:

Variable – one SRR for each comorbid condition

\[\text{SRR (diabetes)} = \frac{\text{# hospitalisations with diabetes discharged alive}}{\text{# hospitalisations with diabetes}} \]

ICD-10-AM – one SRR for each ICD code within the comorbid conditions

\[\text{SRR (E10.4)} = \frac{\text{# hospitalisations with E10.4 discharged alive}}{\text{# hospitalisations with E10.4}} \]
Data

- Hospitalisations with S00-T89 PD discharged dead at any admission within 90 days of injury date where injury date was 1/1/2000-31/8/2003 excluding those readmissions where the 1st admission didn’t have S00-T89 PD

plus
- 1st admission hospitalisations with an S00-T89 PD & injury date between 1/1/2000 & 31/8/2003 that either stayed at least one night in hospital or died within 90 days

plus
- Fatalities located in the Mortality Collection with date of death between 1/1/2000 & 31/8/2003 who had an S00-T89 diagnosis in any field

- 186,835 cases of which 9,968 (5.3%) were deaths
(Excluding data from Mortality collection, there were 182,673 cases of which 1,969 (1.1%) were deaths)
Method - 1

- Calculated the following ICISSs:

<table>
<thead>
<tr>
<th>ICISS</th>
<th>Mortality Collection</th>
<th>Comorbidity Approach</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICISS1</td>
<td>(traditional)*</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>ICISS2</td>
<td>No</td>
<td>HARM</td>
<td>ICD-10-AM code</td>
</tr>
<tr>
<td>ICISS3</td>
<td>No</td>
<td>HARM</td>
<td>Variable</td>
</tr>
<tr>
<td>ICISS4</td>
<td>No</td>
<td>Charlson</td>
<td>ICD-10-AM code</td>
</tr>
<tr>
<td>ICISS5</td>
<td>No</td>
<td>Charlson</td>
<td>Variable</td>
</tr>
<tr>
<td>ICISS6</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ICISS7</td>
<td>Yes</td>
<td>HARM</td>
<td>ICD-10-AM code</td>
</tr>
<tr>
<td>ICISS8</td>
<td>Yes</td>
<td>HARM</td>
<td>Variable</td>
</tr>
<tr>
<td>ICISS9</td>
<td>Yes</td>
<td>Charlson</td>
<td>ICD-10-AM code</td>
</tr>
<tr>
<td>ICISS10</td>
<td>Yes</td>
<td>Charlson</td>
<td>Variable</td>
</tr>
</tbody>
</table>
Method - 2

- Because average # of diagnoses per person in Hospitalisations data was 3x that from Mortality Collection, used ‘worst injury’ methodology

\[\text{ICISS} = \text{smallest}[\text{SRR}(A), \text{SRR}(B), \ldots , \text{SRR}(N)] \]

- For the ICISS scores that included comorbidity, comorbid SRRs (cSRRs) contributed as follows:

\[\text{ICISS} = \text{smallest}[\text{SRR}(A), \text{SRR}(B), \ldots , \text{SRR}(N)] \times \text{smallest}[\text{cSRR}(1), \text{cSRR}(2), \ldots , \text{cSRR}(M)] \]

where A, B, \ldots N = injury diagnoses and 1, 2, \ldots M = comorbid variable/ICD code
Method - 3

- Compared the **discrimination** and **calibration** of ICISS2-ICISS10 with ICISS1

Discrimination – assessed by concordance; ability of ICISS to predict survivors from non-survivors on scale from 0-1

Calibration – assessed by Calibration curves & H-L statistic; indicates accuracy of estimates of probability of death
<table>
<thead>
<tr>
<th>ICISS</th>
<th>Concordance</th>
<th>95% CI*</th>
<th>H-L</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICISS1</td>
<td>0.777</td>
<td>(0.772 , 0.783)</td>
<td>2757</td>
<td>0.123</td>
</tr>
<tr>
<td>ICISS2</td>
<td>0.800</td>
<td>(0.795 , 0.806)</td>
<td>1352</td>
<td>0.163</td>
</tr>
<tr>
<td>ICISS3</td>
<td>0.794</td>
<td>(0.790 , 0.798)</td>
<td>1361</td>
<td>0.150</td>
</tr>
<tr>
<td>ICISS4</td>
<td>0.818</td>
<td>(0.813 , 0.823)</td>
<td>1673</td>
<td>0.184</td>
</tr>
<tr>
<td>ICISS5</td>
<td>0.816</td>
<td>(0.811 , 0.821)</td>
<td>1710</td>
<td>0.175</td>
</tr>
<tr>
<td>ICISS6</td>
<td>0.851</td>
<td>(0.848 , 0.855)</td>
<td>2222</td>
<td>0.227</td>
</tr>
<tr>
<td>ICISS7</td>
<td>0.874</td>
<td>(0.870 , 0.877)</td>
<td>1233</td>
<td>0.282</td>
</tr>
<tr>
<td>ICISS8</td>
<td>0.866</td>
<td>(0.863 , 0.870)</td>
<td>1256</td>
<td>0.262</td>
</tr>
<tr>
<td>ICISS9</td>
<td>0.891</td>
<td>(0.888 , 0.894)</td>
<td>926</td>
<td>0.328</td>
</tr>
<tr>
<td>ICISS10</td>
<td>0.885</td>
<td>(0.882 , 0.888)</td>
<td>910</td>
<td>0.301</td>
</tr>
</tbody>
</table>

*Bootstrap adjusted CI
Results – Concordance

- **Best** = ICISS9 (mortality data and CCI at ICD-10-AM level)

- **Worst** = ICISS1 (traditional)

- ICISS6-10 (hospitalisation and mortality data) all had better concordance than ICISS1-5 (hospitalisation data only)

- Scores using comorbidity data had higher concordance than corresponding score that didn’t include comorbidity

- Scores using CCI had better concordance than those using HARM

- Scores using comorbidity SRRs at ICD-10-AM level had higher concordance than respective scores using SRRs at variable level
Results – Calibration 1

- Since the vast majority of cases have ICISS close to 1, only cases with estimated mortality ≤ 30% are presented. (Corresponds to 90-99% of the data depending on which ICISS)
- Differences in performance is difficult to assess through calibration curves
- Calibration was generally better at lower levels of estimated mortality
Results – Calibration 2

- Scores that used hospital data only to calculate SRRs (ICISS1-5) underestimated mortality whereas those that used hospital + mortality data (ICISS6-10) overestimated mortality
- H-L statistic was better for scores that included comorbidity
- Scores that included mortality data & CCI (ICISS9&10) had the best H-L statistics
In summary

Can we improve the predictive ability of ICISS by….

• Using both NZHIS Hospitalisations & Mortality data in ICISS calculation - YES

• Accounting for comorbidity – YES
Issues – mortality data

- Recording & coding of deaths that occur outside hospital is very different to that for in-hospital deaths

- Injury diagnostic codes used in the Mortality Collection appear to be less specific than those in the NMDS – may explain the overestimation of mortality by models include deaths from the Mortality Collection (ICISS6-10).

IPRU is currently negotiating funding to explore the reliability of the diagnoses in the Mortality Collection
Issues – Comorbidity

• Data availability?

• Only the worst comorbid SRR was included. In comparison, the HARM approach had separate terms in model for each comorbid condition.

• Age is correlated with comorbidity.

 Is including comorbidity usefully better than the simpler term, age?
 Is there justification for including both?

• Since vast majority of comorbidity occurs in older people:

 Should SRRs be population group dependent? E.g. SRRs be calculated separately for 0-74 yr olds & 75+ yr olds.
 Should there be separate serious non-fatal indicators for children/adults and for older people for all priority areas?
Policy implications

Suggests the methodology used to obtain severity scores from which injuries are classified could be improved

Impact on current NZIPS serious non-fatal injury indicators?

- Using ICISS1<=0.941 essentially selects a "basket" of diagnoses that have high probability of admission (face validity)
- Diagnoses captured are essentially the operational definition of serious non-fatal injury used for the NZIPS
- Using e.g. ICISS9, would require a different threshold to be chosen
 Hypothesis = ICISS9 threshold chosen that results in an operational definition of "serious injury" based on a similar list of diagnoses

Unlikely current NZIPS indicators are misleading
Conclusions

• Evidence to suggest the predictive ability of ICISS can be improved by using Mortality data and accounting for comorbidity

• Current NZIPS serious non-fatal injury indicators calculated without either **BUT** expect this work doesn’t compromise their validity

Rather than modify the methodology used to define ‘serious non-fatal injuries’ on an ad-hoc basis, it was agreed by the Interagency Injury Indicators Group to update every 5 yrs (2010).